Progressive resolution coding of hyperspectral imagery featuring region of interest access
نویسندگان
چکیده
We propose resolution progressive Three-Dimensional Set Partitioned Embedded bloCK (3D-SPECK), an embedded wavelet based algorithm for hyperspectral image compression. The proposed algorithm also supports random Region-Of-Interest (ROI) access. For a hyperspectral image sequence, integer wavelet transform is applied on all three dimensions. The transformed image sequence exhibits a hierarchical pyramidal structure. Each subband is treated as a code block. The algorithm encodes each code block separately to generate embedded sub-bitstream. The sub-bitstream for each subband is SNR progressive, and for the whole sequence, the overall bitstream is resolution progressive. Rate is allocated amongst the sub-bitstreams produced for each block. We always have the full number of bits possible devoted to that given scale, and only partial decoding is needed for the lower than full scales. The overall bitstream can serve the lossy-to-lossless hyperspectral image compression. Applying resolution scalable 3D-SPECK independently on each 3D tree can generate embedded bitstream to support random ROI access. Given the ROI, the algorithm can identify ROI and reconstruct only the ROI. The identification of ROI is done at the decoder side. Therefore, we only need to encode one embedded bitstream at the encoder side, and different users at the decoder side or the transmission end could decide their own different regions of interest and access or decode them. The structure of hyperspectral images reveals spectral responses that would seem ideal candidates for compression by 3D-SPECK. Results show that the proposed algorithm has excellent performance on hyperspectral image compression.
منابع مشابه
Multi-Source image enhancement via Coupled Dictionary Learning
Motivation. Multi and Hyperspectral remote sensing imagery provide valuable insights regarding the composition of a scene and significantly facilitate tasks like object and material recognition, spectral unmixing and region clustering, among others [1], [2]. However, current remote sensing imaging architectures are unable to concurrently acquire high spatial and spectral resolution imagery, due...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کامل